The Neuroprotective Effect of Platelet-rich Plasma on Erectile Function in Bilateral Cavernous Nerve Injury Rat Model

Chien-Chih Wu MD, PhD, Yi-No Wu MS, Hsiu-O Ho PhD, Kuo-Chiang Chen MD, Ming-Thau Sheu PhD, Han-Sun Chiang MD, PhD

First published:
20 August 2012
Full publication history

DOI:
10.1111/j.1743-6109.2012.02881.x
View/save citation

Cited by:
7 articles
Citation tools

ABSTRACT

Introduction. Neurogenic erectile dysfunction resulting from cavernous nerve (CN) injury is a major complication caused by radical prostatectomy. The use of platelet-rich plasma (PRP) on the nerve-injured site has shown promising results for the nerve regeneration. However, the effects of PRP injection in corpus cavernosum after bilateral CN injury have never been investigated.

Aim. To assess the neuroprotective effect of PRP injection in corpus cavernosum after bilateral CN injury.

Methods. Male Sprague-Dawley rats were randomly divided into three groups: Group I underwent sham operation, while the remaining two groups underwent bilateral CN crush. Crush injury groups were treated at the time of injury with an application of PRP or normal saline only injection in the corpus
cavernosum, respectively. Four weeks later, erectile function (EF) was assessed by CN electrosimulation, and CNs as well as penile tissue were collected for histology.

Main Outcome Measures. Intracavernous pressure (ICP) monitored during electrical stimulation of CNs; myelinated axons number of CNs and dorsal penile nerve; collagen type change, number of apoptotic cells, and mRNA expression of caspase-3 and transforming growth factor-β1 (TGF-β1) in the corpus cavernosum.

Results. Four weeks after surgery, in the vehicle-only group, the functional evaluation showed a lower mean maximal ICP than that in the sham group ($P < 0.05$). PRP treatments resulted in significant recovery of EF, as compared with the vehicle-only group ($P < 0.05$). Histologically, the PRP-treated group had a significant preservation of myelinated axons of CNs compared with the vehicle-only group ($P < 0.05$) and reduced the apoptotic index. The mRNA expression of TGF-β1 in the corpus cavernosum tissue was significantly decreased in the PRP group compared with the vehicle-only group ($P < 0.05$).

Related content

The articles below have been selected for you based on the article you are currently viewing.

Intracavernous Growth Differentiation Factor-5 Therapy Enhances the Recovery of Erectile Function in a Rat Model of Cavernous Nerve Injury

Thomas M. Fandel, Anthony J. Bella, Guiting Lin, Kavirach Tantiwongse, Ching-Shwun Lin, Jens Pohl, Tom F. Lue
28 June 2008

Injections of Adipose Tissue-Derived Stem Cells and Stem Cell Lysate Improve Recovery of Erectile Function in a Rat Model of Cavernous Nerve Injury

Maarten Albersen, Thomas M. Fandel, Guiting Lin, Guifang Wang, Lia Banie, Ching-Shwun Lin, Tom F. Lue
17 June 2010

GGF2 Is Neuroprotective in a Rat Model of Cavernous Nerve Injury-Induced Erectile Dysfunction
Increased Expression of the Neuroregenerative Peptide Galanin in the Major Pelvic Ganglion Following Cavernous Nerve Injury
Emmanuel Weyne, Maarten Albersen, Johanna L. Hannan, Fabio Castiglione, Petter Hedlund, Godelieve Verbist, Dirk De Ridder, Trinity J. Bivalacqua, Frank Van der Aa
15 May 2014

FK506 and Erectile Function Preservation in the Cavernous Nerve Injury Model: Optimal Dosing and Timing
John P. Mulhall, Alexander Müller, John F. Donohue, Dragan Golijanin, Raanan Tal, Yemi Akin- Olugbade, Keith Kobylarz, Leona Cohen-Gould, Nelson E. Bennett, Peter Scardino
5 March 2008

Citing Literature